Cohomological uniqueness, Massey products and the modular isomorphism problem for $2$-groups of maximal nilpotency class

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cohomological Uniqueness, Massey Products and the Modular Isomorphism Problem for 2-groups of Maximal Nilpotency Class

Let G be a finite 2-group of maximal nilpotency class, and let BG be its classifying space. We prove that iterated Massey products inH∗(BG;F2) do characterize the homotopy type of BG among 2-complete spaces with the same cohomological structure. As a consequence we get an alternative proof of the modular isomorphism problem for 2-groups of maximal nilpotency class.

متن کامل

Wreath Products in the Unit Group of Modular Group Algebras of 2-groups of Maximal Class

We study the unit group of the modular group algebra KG, where G is a 2-group of maximal class. We prove that the unit group of KG possesses a section isomorphic to the wreath product of a group of order two with the commutator subgroup of the group G. MSC2000: Primary 16S34, 20C05; Secondary 16U60

متن کامل

nth-roots and n-centrality of finite 2-generator p-groups of nilpotency class 2

Here we consider all finite non-abelian 2-generator $p$-groups ($p$ an odd prime) of nilpotency class two and study the probability of having $n^{th}$-roots of them. Also we find integers $n$ for which, these groups are $n$-central.

متن کامل

The modular isomorphism problem for the groups of order 512

For a prime p let G be a finite p-group and K a field of characteristic p. The Modular Isomorphism Problem (MIP) asks whether the modular group algebra KG determines the isomorphism type of G. We briefly survey the history of this problem and report on our computer-aided verification of the Modular Isomorphism Problem for the groups of order 512 and the field K with 2 elements.

متن کامل

On rational groups with Sylow 2-subgroups of nilpotency class at most 2

A finite group $G$ is called rational if all its irreducible complex characters are rational valued. In this paper we discuss about rational groups with Sylow 2-subgroups of nilpotency class at most 2 by imposing the solvability and nonsolvability assumption on $G$ and also via nilpotency and nonnilpotency assumption of $G$.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Transactions of the American Mathematical Society

سال: 2013

ISSN: 0002-9947,1088-6850

DOI: 10.1090/s0002-9947-2013-05756-x